Bankruptcy in Malaysia
-
Courtesy of: iMoney.my
http://www.imoney.my/articles/bankruptcy/?utm_source=outbrain&utm_medium=CPC&utm_campaign=Traffic_MY_all_RSS
A reminder to update Picasa
-
*We just updated Picasa. To ensure that sharing to Google+ still works,
please update to the latest version or turn on automatic updates. Thanks,
and happy...
Picasa 3.9: Now with Google+ sharing and tagging
-
Posted by Chandrashekar Raghavan, Product Manager
Picasa 3.9, the latest update to the Picasa client, is ready for you to try
out! This update includes Goo...
The long-sought subatomic particle, also known as the "God particle," was considered a missing cornerstone of physics.
GENEVA — It helps solve one of the most fundamental riddles of the universe: how the Big Bang created something out of nothing 13.7 billion years ago.
In what could go down as one of the great Eureka! moments in physics — and win somebody the Nobel Prize — scientists said Thursday that after a half-century quest, they are confident they have found a Higgs boson, the elusive subatomic speck sometimes called the "God particle."
The existence of the particle was theorized in 1964 by the British physicist Peter Higgs to explain why matter has mass. Scientists believe the particle acts like molasses or snow: When other tiny basic building blocks pass through it, they stick together, slow down and form atoms.
Scientists at CERN, the Geneva-based European Organization for Nuclear Research, announced in July that they had found something that looked like the Higgs boson, but they weren't certain, and they needed to go through the data and rule out the possibility it wasn't something else.
On Thursday, they said they believe they got it right.
"To me it is clear that we are dealing with a Higgs boson, though we still have a long way to go to know what kind of Higgs boson it is," said Joe Incandela, a physicist who heads one of the two main teams at CERN, each involving about 3,000 scientists.
Related: What exactly is the Higgs boson, or 'God particle'?
Whether or not it was a Higgs boson had to be demonstrated by how it interacts with other particles and its quantum properties, CERN said. The data "strongly indicates that it is a Higgs boson," it said.
The discovery explains what once seemed unexplainable and still is a bit hard for the average person to comprehend. But it means the key theory that scientists use to explain everything works — for now, at least.
Its discovery could be a strong contender for the Nobel, though it is uncertain whether the prize would go to the 83-year-old Peter Higgs and the others who first proposed the theory, or to the thousands of scientists who found it, or to all of them.
Finding it wasn't easy. It took more than two decades, thousands of scientists and mountains of data from trillions of colliding protons.
And it needed the world's biggest atom smasher — CERN's Large Hadron Collider, which cost $10 billion to build and run in a 17-mile tunnel beneath the Swiss-French border — to produce the extreme surge of energies simulating those 1 trillionth to 2 trillionths of a second after the Big Bang.
The Higgs boson is so elusive that only about one collision per trillion will produce one of them in the collider.
Related: Will the confirmation of the Higgs boson particle validate Doomsday for mankind?
CERN said it is open question whether this is the Higgs boson that was expected in the original formulation, or the lightest of several Higgses predicted in some theories that go beyond that model.
"We found a new particle and we want to know how it behaves, and maybe it behaves the way it was predicted in 1964, maybe it's a little bit different," said physicist Sean Carroll of the California Institute of Technology, who isn't involved in the research.
Finding a Higgs more or less as expected is actually a bit deflating, Carroll said, because physicists had also hoped that an unexpected type of Higgs might open windows into yet more mysteries of the universe.
The existence of the particle was theorized in 1964 by the British physicist Peter Higgs to explain why matter has mass. Scientists believe the particle acts like molasses or snow: When other tiny basic building blocks pass through it, they stick together, slow down and form atoms.
Scientists at CERN, the Geneva-based European Organization for Nuclear Research, announced in July that they had found something that looked like the Higgs boson, but they weren't certain, and they needed to go through the data and rule out the possibility it wasn't something else.
On Thursday, they said they believe they got it right.
"To me it is clear that we are dealing with a Higgs boson, though we still have a long way to go to know what kind of Higgs boson it is," said Joe Incandela, a physicist who heads one of the two main teams at CERN, each involving about 3,000 scientists.
Related: What exactly is the Higgs boson, or 'God particle'?
Whether or not it was a Higgs boson had to be demonstrated by how it interacts with other particles and its quantum properties, CERN said. The data "strongly indicates that it is a Higgs boson," it said.
The discovery explains what once seemed unexplainable and still is a bit hard for the average person to comprehend. But it means the key theory that scientists use to explain everything works — for now, at least.
Its discovery could be a strong contender for the Nobel, though it is uncertain whether the prize would go to the 83-year-old Peter Higgs and the others who first proposed the theory, or to the thousands of scientists who found it, or to all of them.
Finding it wasn't easy. It took more than two decades, thousands of scientists and mountains of data from trillions of colliding protons.
And it needed the world's biggest atom smasher — CERN's Large Hadron Collider, which cost $10 billion to build and run in a 17-mile tunnel beneath the Swiss-French border — to produce the extreme surge of energies simulating those 1 trillionth to 2 trillionths of a second after the Big Bang.
The Higgs boson is so elusive that only about one collision per trillion will produce one of them in the collider.
Related: Will the confirmation of the Higgs boson particle validate Doomsday for mankind?
CERN said it is open question whether this is the Higgs boson that was expected in the original formulation, or the lightest of several Higgses predicted in some theories that go beyond that model.
"We found a new particle and we want to know how it behaves, and maybe it behaves the way it was predicted in 1964, maybe it's a little bit different," said physicist Sean Carroll of the California Institute of Technology, who isn't involved in the research.
Finding a Higgs more or less as expected is actually a bit deflating, Carroll said, because physicists had also hoped that an unexpected type of Higgs might open windows into yet more mysteries of the universe.
"Scientists always want to be wrong in their theories. They always want to be surprised," he said. "It's a bittersweet victory when your theory turns out to be right, because it means, on the one hand, you're right, that's nice, but on the other hand, you haven't learned anything new that's surprising."
Some of the remaining mysteries including why gravity is so weak and what is the dark matter that is believed to make up a large part of the total mass in the universe, said Patty McBride, who heads a center at the Fermilab in Chicago.
Genesis 3.6.0
-
Genesis 3.6.0 is now available. It includes fixes for deprecation notices
seen on sites running PHP 8.2+ and WordPress 6.7+.
How to update
Existing Gene...
A Better Google Analytics Alternative
-
[image: Fullres]
Our recent migration to GA4 left a lot to be desired and led us to explore
for better google analytics alternatives. We tried just about...
Dos vs Don’ts on Social Media in 2016
-
Since social media comes to our life, it has changed the way people
connect, discover, and share information dramatically. It is really nothing
more than p...
Responsive Design is a Kind of Big Deal
-
Did you know that if your website doesn’t have a responsive design, which
means the content doesn’t adapt to a variety of screen sizes, your SEO
efforts ...
Aliens From Hell - Freeman at Conspiracy Con 2013
-
What occult practices have the Nazis, and now NASA, employed to communicate
and channel entities into our dimension. What is the real purpose of the
billio...
Bankruptcy in Malaysia
-
Courtesy of: iMoney.my
http://www.imoney.my/articles/bankruptcy/?utm_source=outbrain&utm_medium=CPC&utm_campaign=Traffic_MY_all_RSS
A reminder to update Picasa
-
*We just updated Picasa. To ensure that sharing to Google+ still works,
please update to the latest version or turn on automatic updates. Thanks,
and happy...
Improvements to the Blogger template HTML editor
-
Posted by: +Samantha Schaffer and +Renee Kwang, Software Engineer Interns.
Whether you’re a web developer who builds blog templates for a living, or a
web...
Picasa 3.9: Now with Google+ sharing and tagging
-
Posted by Chandrashekar Raghavan, Product Manager
Picasa 3.9, the latest update to the Picasa client, is ready for you to try
out! This update includes Goo...
Appointment Scheduling Gadget
-
From our awesome friends at DaringLabs.
[image: Powered by Google App Engine]
Yes, I want to book appointments from my blog!
Use your blog to drum up ...
The long-sought subatomic particle, also known as the "God particle," was considered a missing cornerstone of physics.
ReplyDeleteGENEVA — It helps solve one of the most fundamental riddles of the universe: how the Big Bang created something out of nothing 13.7 billion years ago.
In what could go down as one of the great Eureka! moments in physics — and win somebody the Nobel Prize — scientists said Thursday that after a half-century quest, they are confident they have found a Higgs boson, the elusive subatomic speck sometimes called the "God particle."
The existence of the particle was theorized in 1964 by the British physicist Peter Higgs to explain why matter has mass. Scientists believe the particle acts like molasses or snow: When other tiny basic building blocks pass through it, they stick together, slow down and form atoms.
Scientists at CERN, the Geneva-based European Organization for Nuclear Research, announced in July that they had found something that looked like the Higgs boson, but they weren't certain, and they needed to go through the data and rule out the possibility it wasn't something else.
On Thursday, they said they believe they got it right.
"To me it is clear that we are dealing with a Higgs boson, though we still have a long way to go to know what kind of Higgs boson it is," said Joe Incandela, a physicist who heads one of the two main teams at CERN, each involving about 3,000 scientists.
Related: What exactly is the Higgs boson, or 'God particle'?
Whether or not it was a Higgs boson had to be demonstrated by how it interacts with other particles and its quantum properties, CERN said. The data "strongly indicates that it is a Higgs boson," it said.
The discovery explains what once seemed unexplainable and still is a bit hard for the average person to comprehend. But it means the key theory that scientists use to explain everything works — for now, at least.
Its discovery could be a strong contender for the Nobel, though it is uncertain whether the prize would go to the 83-year-old Peter Higgs and the others who first proposed the theory, or to the thousands of scientists who found it, or to all of them.
Finding it wasn't easy. It took more than two decades, thousands of scientists and mountains of data from trillions of colliding protons.
And it needed the world's biggest atom smasher — CERN's Large Hadron Collider, which cost $10 billion to build and run in a 17-mile tunnel beneath the Swiss-French border — to produce the extreme surge of energies simulating those 1 trillionth to 2 trillionths of a second after the Big Bang.
The Higgs boson is so elusive that only about one collision per trillion will produce one of them in the collider.
Related: Will the confirmation of the Higgs boson particle validate Doomsday for mankind?
CERN said it is open question whether this is the Higgs boson that was expected in the original formulation, or the lightest of several Higgses predicted in some theories that go beyond that model.
"We found a new particle and we want to know how it behaves, and maybe it behaves the way it was predicted in 1964, maybe it's a little bit different," said physicist Sean Carroll of the California Institute of Technology, who isn't involved in the research.
Finding a Higgs more or less as expected is actually a bit deflating, Carroll said, because physicists had also hoped that an unexpected type of Higgs might open windows into yet more mysteries of the universe.
ReplyDeleteThe existence of the particle was theorized in 1964 by the British physicist Peter Higgs to explain why matter has mass. Scientists believe the particle acts like molasses or snow: When other tiny basic building blocks pass through it, they stick together, slow down and form atoms.
Scientists at CERN, the Geneva-based European Organization for Nuclear Research, announced in July that they had found something that looked like the Higgs boson, but they weren't certain, and they needed to go through the data and rule out the possibility it wasn't something else.
On Thursday, they said they believe they got it right.
"To me it is clear that we are dealing with a Higgs boson, though we still have a long way to go to know what kind of Higgs boson it is," said Joe Incandela, a physicist who heads one of the two main teams at CERN, each involving about 3,000 scientists.
Related: What exactly is the Higgs boson, or 'God particle'?
Whether or not it was a Higgs boson had to be demonstrated by how it interacts with other particles and its quantum properties, CERN said. The data "strongly indicates that it is a Higgs boson," it said.
The discovery explains what once seemed unexplainable and still is a bit hard for the average person to comprehend. But it means the key theory that scientists use to explain everything works — for now, at least.
Its discovery could be a strong contender for the Nobel, though it is uncertain whether the prize would go to the 83-year-old Peter Higgs and the others who first proposed the theory, or to the thousands of scientists who found it, or to all of them.
Finding it wasn't easy. It took more than two decades, thousands of scientists and mountains of data from trillions of colliding protons.
And it needed the world's biggest atom smasher — CERN's Large Hadron Collider, which cost $10 billion to build and run in a 17-mile tunnel beneath the Swiss-French border — to produce the extreme surge of energies simulating those 1 trillionth to 2 trillionths of a second after the Big Bang.
The Higgs boson is so elusive that only about one collision per trillion will produce one of them in the collider.
Related: Will the confirmation of the Higgs boson particle validate Doomsday for mankind?
CERN said it is open question whether this is the Higgs boson that was expected in the original formulation, or the lightest of several Higgses predicted in some theories that go beyond that model.
"We found a new particle and we want to know how it behaves, and maybe it behaves the way it was predicted in 1964, maybe it's a little bit different," said physicist Sean Carroll of the California Institute of Technology, who isn't involved in the research.
Finding a Higgs more or less as expected is actually a bit deflating, Carroll said, because physicists had also hoped that an unexpected type of Higgs might open windows into yet more mysteries of the universe.
"Scientists always want to be wrong in their theories. They always want to be surprised," he said. "It's a bittersweet victory when your theory turns out to be right, because it means, on the one hand, you're right, that's nice, but on the other hand, you haven't learned anything new that's surprising."
Some of the remaining mysteries including why gravity is so weak and what is the dark matter that is believed to make up a large part of the total mass in the universe, said Patty McBride, who heads a center at the Fermilab in Chicago.